Total de visualizações de página

sexta-feira, 29 de março de 2013

CONVERSÕES DE MEDIDAS DE ÂNGULOS


Quando medimos o ângulo de um arco utilizamos como unidade o grau ou o radiano. Temos que 1º (um grau) possui 60’ (sessenta minutos) e 1’ (um minuto) possui 60” (sessenta segundos). Uma circunferência possui 360 arcos de abertura igual a 1º. No caso da medida em radianos, dizemos que o arco mede um radiano (1 rad) se o seu comprimento for igual ao comprimento do raio da circunferência que se encontra o arco medido.

Α tabela a seguir mostra algumas relações entre as unidades em graus e radianos.

Convertendo Graus em Radianos

Na conversão de graus para radianos utilizamos uma regra de três simples, por exemplo:
20º em radianos
grausradianos
20ºx
180º π rad
15º em radianos
grausradianos
15ºx
180ºπ rad




120º em radianos
grausradiano
120ºx
180ºπ rad


150º em radianos
grausradiano
150ºx
180ºπ rad


300º em radianos
grausradiano
300ºx
180ºπ rad

Convertendo Radianos em Graus
Na conversão de radianos para graus, basta substituirmos o valor de π por 180º. Veja exemplos:

ARCOS CÔNGRUOS


Temos que uma volta completa no círculo trigonométrico corresponde a 360º ou 2π rad, de acordo com a ilustração a seguir:

Note que o círculo possui raio medindo uma unidade e é dividido em quatro quadrantes, facilitando a localização dos ângulos trigonométricos, de acordo com a seguinte situação:

1º quadrante: abscissa positiva e ordenada positiva → 0º < α < 90º.
2º quadrante: abscissa positiva e ordenada negativa → 90º < α < 180º.
3º quadrante: abscissa negativa e ordenada negativa → 180º < α < 270º.
4º quadrante: abscissa positiva e ordenada negativa → 270º < α < 360º. 

Nos estudos trigonométricos existem arcos que possuem medidas maiores que 360º, isto é, eles possuem mais de uma volta. Sabemos que uma volta completa equivale a 360º ou 2π rad, com base nessa informação podemos reduzi-lo à primeira volta, realizando o seguinte cálculo: dividir a medida do arco em graus por 360º (volta completa), o resto da divisão será a menor determinação positiva do arco. Dessa forma, a determinação principal do arco em um dos quadrantes fica mais fácil.

Exemplo 1
Determinar a localização principal do arco de 4380º utilizando a regra prática.

4380º : 360º é correspondente a 4320º + 60º, portanto, o resto da divisão é igual a 60º que é a determinação principal do arco, dessa forma, sua extremidade pertence ao 1º quadrante.

Exemplo 2
Qual a determinação principal do arco com medida igual a 1190º?

1190º : 360º, a divisão possui resultado igual a 3 e resto 110, concluímos que o arco possui três voltas completas e extremidade no ângulo de 110º, pertencendo ao 2º quadrante.


Arcos Côngruos

Dois arcos são côngruos quando possuem a mesma origem e a mesma extremidade. Uma regra prática eficiente para determinar se dois arcos são côngruos consiste em verificar se a diferença entre eles é um número divisível ou múltiplo de 360º, isto é, a diferença entre as medidas dos arcos dividida por 360º precisa ter resto igual a zero.

Exemplo 3
Verifique se os arcos de medidas 6230º e 8390º são côngruos.

8390º – 6230º = 2160
2160º / 360º = 6 e resto igual a zero. Portanto, os arcos medindo 6230º e 8390º são côngruos.

Exemplo 4
Confira se os arcos de medidas 2010º e 900º são côngruos.

2010º – 900º = 1110º
1110º / 360º = 3 e resto igual a 30. Portanto, os arcos não são côngruos

COMPRIMENTO DE UMA CURVA



Uso da trigonometria na construção de estradas

Na construção de estradas e linhas férreas é essencial a utilização da trigonometria, principalmente nas situações que envolvem mudanças de direções. As curvas são projetadas com base em modelos de arcos de circunferência e na medida do ângulo central (relativo à curva). Vamos através de alguns exemplos demonstrar o cálculo efetuado no intuito de determinar o comprimento da curva.

Exemplo 1

O projeto de uma estrada demonstra uma curva com o formato de um arco de circunferência com raio medindo 200 metros. Do ponto A (início da curva) até o ponto B (término da curva) a estrada mudou sua direção em 40º. Qual será o comprimento da curva?
Ao considerarmos que a volta completa na circunferência equivale a 360º e em questões de comprimento a C = 2 * π * r, podemos adotar uma regra de três relacionando as medidas conhecidas. Observe:



360x = 40 * 2 * 3,14 * 200
360x = 50240
x = 50 240 / 360
x = 139,5 (aproximadamente)

O comprimento da curva será de aproximadamente 139,5 metros.

Na engenharia civil, os prédios muito altos, considerados arranha-céus, são projetados de forma a sofrerem pequenas oscilações, em razão da força imposta pelos ventos, pois quanto mais alto, maior a velocidade do vento.

Exemplo 2

Um edifício de 400 metros possui uma oscilação de 0,3º. Determine o comprimento do arco relativo a essa oscilação?


360x = 0,3 * 2 * 3,14 * 400
360x = 753,6
x = 753,6 / 360
x = 2,1 m (aproximadamente) 

COMPRIMENTO DE UM ARCO


Dada uma circunferência de centro O, raio r e dois pontos A e B pertencentes à circunferência, temos que a distância entre os pontos assinalados é um arco de circunferência. O comprimento de um arco é proporcional à medida do ângulo central, quanto maior o ângulo, maior o comprimento do arco; e quanto menor o ângulo, menor o comprimento do arco.
Para determinarmos o comprimento de uma circunferência utilizamos a seguinte expressão matemática: C = 2*π*r. A volta completa em uma circunferência é representada por 360º. Vamos realizar uma comparação entre o comprimento da circunferência em medida linear (ℓ) e medida angular (α), observe:
linear
angular
2*π*r
360º
 α




Essa expressão pode ser utilizada para determinar o comprimento do arco de uma circunferência de raio r e ângulo central α em graus. Nesses casos utilize π = 3,14.

Caso o ângulo central seja dado em radianos, utilizamos a seguinte expressão: ℓ = α * r.

Exemplo 1

Determine o comprimento de um arco com ângulo central igual a 30º contido numa circunferência de raio 2 cm.

ℓ = α * π * r / 180º
ℓ = 30º * 3,14 * 2 / 180º
ℓ = 188,40 / 180
ℓ = 1,05 cm


O comprimento do arco será de 1,05 centímetros.


Exemplo 2

O ponteiro dos minutos de um relógio de parede mede 10 cm. Qual será o espaço percorrido pelo ponteiro após 30 minutos?

Veja a figura do relógio:
ℓ = α * π * r / 180º
ℓ = 180º * 3,14 * 10 / 180º
ℓ = 5652 / 180
ℓ = 31,4 cm 

O espaço percorrido pelo ponteiro dos minutos será de 31,4 centímetros.


Exemplo 3

Determine o comprimento de um arco com ângulo central medindo π/3 contido numa circunferência de 5 cm de raio.

ℓ = α * r
ℓ = π/3 * 5
ℓ = 5π/3
ℓ = 5*3,14 / 3
ℓ = 15,7 / 3
ℓ = 5,23 cm



Exemplo 4

Um pêndulo de 15 cm de comprimento oscila entre A e B descrevendo um ângulo de 15º. Qual é o comprimento da trajetória descrita pela sua extremidade entre A e B?


ℓ = α * π * r / 180º
ℓ = 15º * 3,14 * 15 / 180º
ℓ = 706,5 / 180
ℓ = 3,9 cm



O comprimento da trajetória entre A e B é de 3,9 centímetros

CIRCUNFERÊNCIA TRIGONOMÉTRICA


A circunferência trigonométrica está representada no plano cartesiano com raio medindo uma unidade. Ela possui dois sentidos a partir de um ponto A qualquer, escolhido como a origem dos arcos. O ponto A será localizado na abscissa do eixo de coordenadas cartesianas, dessa forma, este ponto terá abscissa 1 e ordenada 0. Os eixos do plano cartesiano dividem o círculo trigonométrico em quatro partes, chamadas de quadrantes, onde serão localizados os números reais α relacionados a um único ponto P. Os sentidos dos arcos trigonométricos estão de acordo com as seguintes definições:

Se α = 0, P coincide com A.
Se α > 0, o sentido do círculo trigonométrico será anti-horário.
Se α < 0, o sentido do círculo será horário.
O comprimento do arco AP será o módulo de α.





Na ilustração a seguir estão visualizados alguns números importantes, eles são referenciais para a determinação principal de arcos trigonométricos:
Uma volta completa no círculo trigonométrico corresponde a 360º ou 2π radianos, se o ângulo α a ser localizado possuir módulo maior que 2π, precisamos dar mais de uma volta no círculo para determinarmos a sua imagem.

Por exemplo, para localizarmos 8π/3 = 480º, damos uma volta completa no sentido anti-horário e localizamos o arco de comprimento 2π/3, pois 8π/3 = 6π/3 + 2π/3 = 2π + 2π/3.
Na localização da determinação principal de –17π/6 = –510º, devemos dar 2 voltas completas no sentido horário e localizarmos o arco de comprimento –5π/6, pois –17π/6 = –12π/6 – 5π/6 = 2π – 5π/6.

APLICAÇÃO DAS LEIS TRIGONOMÉTRICAS DE UM TRIÂNGULO


Não há sentido em aprender diversos conceitos matemáticos sem que exista uma compreensão da aplicação destes conceitos, mesmo que em situações hipotéticas. Por hora veremos a aplicação de duas leis trigonométricas que se aplicam em qualquer situação em que se tenha um triângulo, seja ele qual for.
Os conceitos são os das leis do seno e do cosseno, conceitos que trabalham com apenas dois elementos: ângulo e medida do lado.
Veremos uma mesma situação, onde um construtor de pontes deseja calcular o tamanho da ponte que será construída, entretanto, em cada uma das situações as informações serão diferentes. Com isso veremos os casos nos quais é possível a aplicação da Lei do Seno e da Lei do Cosseno.
Situação 1) O construtor deseja calcular a distância do ponto A ao ponto C, pontos onde a ponte será construída, entretanto ele não possui nenhuma ferramenta que meça essa distância, mas ele conhece de matemática e teve a seguinte ideia. “Como eu possuo uma ferramenta que calcula ângulos, conseguirei determinar o comprimento desta ponte”. Com isso ele marcou um ponto B, calculou o ângulo BÂC que foi igual a 85°, caminhou até o ponto B, uma distância de 2km, e calculou o ângulo ABC obtendo um ângulo de 65°. O construtor acredita que com essas informações será possível calcular o comprimento da ponte.
Veja como será realizado esse cálculo:
Aplicação da lei trigonométrica

Note que as únicas informações dadas foram:
Vejamos as expressões das Leis trigonométricas que podem ser aplicadas.
Lei do seno:
Lei do cosseno:
Veja que com os dados que temos não é possível aplicar a lei do cosseno, pois precisamos das medidas de dois lados e temos apenas a medida de um lado e de dois ângulos, portanto, aplicaremos a lei dos senos.
O objetivo é determinar o valor do segmento AC, sendo assim utilizaremos as duas últimas proporções.

Situação 2) O construtor deseja calcular a distância do ponto A ao ponto C, pontos onde a ponte será construída, entretanto, com a ferramenta que ele possui só foi possível calcular as medidas dos segmentos AB e BC, no qual o segmento AB é igual a 2km e o segmento BC 3,99km. Utilizou novamente a ferramenta de medir ângulos e obteve que o ângulo do vértice B é igual a 65°. Com isso, o construtor conseguiu determinar o comprimento da ponte. Faça você também esses cálculos.
Vejamos as informações que temos:
Temos a medida de dois lados e apenas um ângulo. Um fato importante que nos permite aplicar a lei dos cossenos é o ângulo informado ser determinado pelos dois lados que são conhecidos.
Assim, devemos nos atentar às informações que a situação nos passa, para que saibamos qual relação devemos utilizar. Esse é o ponto crucial para diferenciar essas duas leis quanto à sua aplicação.

ÂNGULOS NOTÁVEIS (trigonometria)


O estudo da trigonometria é fundamentado nas relações existentes entre ângulos e medidas. No triângulo retângulo, essas relações são constantemente trabalhadas e alguns ângulos presentes nesse tipo de triângulo são usados com maior frequência, eles recebem o nome de ângulos notáveis e seus valores são de 30º, 45º e 60º.

Vamos relembrar as relações trigonométricas existentes no triângulo retângulo: seno, cosseno e tangente.
Para demonstrarmos as relações trigonométricas no triângulo retângulo dos ângulos 30°e 60°, é preciso obter um triângulo que tenha esses dois ângulos.

Observe o triângulo equilátero (todos os ângulos internos são iguais a 60º) ABC de lado igual a x, é preciso calcular o valor da sua altura. Traçar sua altura é o mesmo que traçar a bissetriz do ângulo A e a mediatriz da base BC.
Para calcular a sua altura, basta aplicar o Teorema de Pitágoras no triângulo AHC:
Com o valor da altura em função de x e utilizando o triângulo retângulo AHC, podemos determinar as relações trigonométricas dos ângulos de 30° e de 60º no triângulo AHC.
Como o triângulo equilátero não possui ângulo de 45°, precisamos traçar a diagonal do quadrado formando dois triângulos retângulos, a diagonal é uma bissetriz, ou seja, divide o ângulo de 90º em dois de 45º. Veja como:

Dado o quadrado ABCD de lado x e diagonal d.
Aplicando o Teorema de Pitágoras no triângulo ABD, iremos descobrir um valor para a diagonal (d) em função de x.


Assim, com o valor da diagonal é possível calcular o valor das relações trigonométricas do triângulo retângulo ABD com o ângulo de 45°.
Com base em algumas deduções geométricas e cálculos matemáticos, conseguimos calcular as relações trigonométricas seno, cosseno e tangente dos ângulos de 30º, 45º e 60º do triângulo retângulo. A partir dos cálculos efetuados construímos a seguinte tabela de relações trigonométricas: